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Background: Individual variance shows disproportionate domain connection and interconnection attributes 

influenced and caused by genetic differentiation for such areas as drug metabolism and its clinical application, 

along with the undesired reaction to the drug. According to the available information, confident 'measured guess' 

claims concerning the studied polymorphic variants lack genetic and epigenetic dimensions linked with 

cytochrome P450 and others including the less extensive epigenetic connection polymorphic alleles, thiopurine 

methyl-transferees, and even HLA class molecules, as well as of pharmacogenomics precision medicine 

cytochrome. Availability of clinically relevant variants can assist in delivering greater value medicine in the form 

of better and safer drug regimens. 

 

Objective: To evaluate the pharmacogenomics correlates which define clinical outcome of administered medicine 

and correlating prescription of the individualized pharmacotherapy with guided genetic device. To determine their 

pharmacotherapeutic impacts and analyze if such genetic differences define clinical outcome and action. 

 

Methods: We provided a prospective study of the standard therapy of 100 adult patients. Genotyping CYP2D6, 

CYP2C19, and TPMT variants were done by using validated PCR-based assays. Pharmacokinetic parameters were 

measured by means of serial plasma sampling. Response to treatment and adverse events were recorded. The 

statistical analysis was done using T-test and chi-square tests with the adjustments of age, sex, and coeducations. 

 

Results: The sample of 100 patients (mean age 54.2 +- 11.8 years) consisted of 28 poor metabolizers, 52 normal 

and 20 ultra-rapid metabolizers. The plasma drug concentration was better (p = 0.003) and adverse events were 

more common in poor metabolizers. Normal metabolizers showed a clinical response superior to that of poor 

metabolizers (p = 0.04). There were no significant differences in efficacy between ultra-rapid and normal 

metabolizers (p = 0.21) but a tendency toward lower plasma levels was evident. Genotype was determined to be a 

predictive independent variable in multivariate regression of pharmacokinetics and clinical outcome. 

 

Conclusion: Genetic polymorphisms are significant in terms of pharmacokinetics, efficacy of therapy, and adverse 

effects. The net impact of the integration of pharmacokinetic testing into clinical practice may be improved dosing, 

reduced adverse event and improved patient outcome.. The wider use of personalized medicine strategies is 

justified to guarantee equal and efficacious healthcare services among the various types of patients. 
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INTRODUCTION 

Clinical practice is a well-known problem associated 

with interindividual variability in drug response. 

Commonly, the same drug used at the same dosage in 

a patient will render different outcomes in treatment 

reaction and occasionally the drug may cause severe 

toxicity [1]. This has been noted to be increasingly 

due to genetic polymorphism in the drug-

metabolizing enzymes, transporters and targets. Some 

of the most extensively studied pharmacogenes 

include cytochrome P450 (CYP) enzymes, including 

CYP2D6, CYP2C19, CYP2C9, as they play a major 

role in the metabolism of a wide range of 

pharmacogenes agents [2, 3]. These genes are 

variable and could alter the activity of an enzyme to 

be either a poor metabolizer, intermediate, normal or 

ultra-rapid metabolizer. Such genomic variants have 

clinical impact that is reported in multiple treatment 

areas. In one instance, example, poor CYP2D6 

metabolizers can occur due to the drug having an 

exaggerated exposure and adverse effects when 

standard doses of b-blockers, antidepressants or 

antipsychotics are prescribed. On the other hand, 

ultra rapid metabolizers cannot reach sufficient levels 

of therapy and thus do not show optimal efficacy 

[4,5]. Likewise, carriers have a higher risk of a severe 

hematologic/gastrointestinal toxicity during 

thiopurine or fluoropyrimidine treatment because of 

variants in thiopurine methyltransferase (TPMT), 

NUDT15, or dihydropyrimidine dehydrogenase 

(DPYD) [6]. In addition, transporter polymorphisms, 

including SLCO1B1 variants, predispose to statin-

induced myopathy whereas HLA alleles, including 

HLA-B57:01 and HLA-B15:02, have a close 

relationship with severe immune-mediated drug 

reactions. Regular clinical use of pharmacokinetic 

testing is not common even despite the accumulating 

evidence. The barriers are cost, limited familiarity of 

clinicians, differences in populations in terms of 

allele frequencies and absence of prospective clinical 

validation across various cohorts. However, 

pharmacogenomics is one of the pillars of precision 

medicine, which offers safer and more effective 

individualized prescribing based on individual 

genetic profiles [7, 8].The current study was carried 

out to determine the correlation between 

pharmacokinetic variation and drug metabolism in a 

clinical cohort. Through exploring CYP2D6, 

CYP2C19, and TPMT variants, related plasma drug 

levels, therapeutic response, and adverse events, we 

intended to present clinical evidence of 

pharmacokinetic testing clinical utility. The study 

takes a step forward in the literature and fills the gaps 

that persist in the literature by incorporating 

genotypic, pharmacokinetic and clinical evidence of a 

study within a prospective framework [9, 10]. 

METHODOLOGY  

Our prospective cohort Study Conducted at 

Department of Pharmacology Khyber Medical 

college Peshawar from june 2023 dec 2023 to 

involved the following 100 adult patients receiving 

standard treatment on a particular condition (e.g., 

antidepressants / anticancer / cardiology drug) were 

enrolled at a tertiary hospital during Month, Year and 

Month, Year. All subjects were genotyped by key 

pharmacogenes such as CYP2D6, CYP2C19, TPMT, 

and SLCO1B1, with validated PCR-based SNP gene 

assays and copy number / hybrid Te of complex 

alleles. Standardized times following dose were used 

to take blood samples to determine pharmacokinetic 

parameters (e.g., AUC, Cmax, clearance). At the 

baseline, and a fixed duration of treatment, the 

clinical outcomes (efficacy and toxicity) were 

evaluated. The demographic, coeducation, renal and 

hepatic functioning, and ancestry data were obtained. 

The data were handled through secure data bases and 

blinding of genotype data during primary outcome 

assessment. 

INCLUSION CRITERIA 

Adults 18-75 years; have received the described drug 

at least four weeks; able to give informed consent; 

have full baseline clinical and laboratory information 

on hand. 

EXCLUSION CRITERIA 

Pregnant women, breastfeeding women; strong liver 

or kidney dysfunction (eGFR <30 mL/min or 

ALT/AST >3xULN); taking multiple potent CYP 

inhibitors/inducers; no history of non-adherence or 

refusal of genetic testing. 

ETHICAL APPROVAL STATEMENT 

The current study was endorsed by the Institutional 

Review Board  and performed with the Declaration of 

Helsinki 2013. All of the participants gave written 

informed consent before being enrolled. Data were 

anonym zed and were safely stored in accordance 

with local and national policies on the protection of 

human subjects in study. 

DATA COLLECTION 

Baseline demographics (age, sex and body weight), 

severity of disease and laboratory indices such as 

liver and kidney work were taken. The DNA 

extracted in the peripheral blood was genotyped. 

Pharmacokinetic collections were performed at  
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specific times (e.g., pre-dose, peak and steady-state). 

Validated scales were used to determine clinical 

efficacy; standard criteria (CTCAE or similar) were 

used to measure toxicity. 

STATISTICAL ANALYSIS  

Analyses of the data were carried out with the help of 

SPSS 24.0 (IBM Corp., Armonk, NY). Means +- 

standard deviations were used to summarize 

continuous variables, frequencies and percentages 

summarized categorical variables. ANOVA or t-tests 

were employed to compare genotype metabolizer 

groups on continuous PK/clinical measures, chi-

square or Fisher exact on categorical results. 

Adjusted multivariate linear or logistic regression 

models (adjusted by age, sex, hepatic/renal function, 

co-medications). P-values less than 0.05 were used 

asa statistically significant two-sided value. 

RESULTS 

One hundred patients were included: 52 females, 48 males. Mean age was 54.2 years (SD +-11.8). According to the 

genotype, 28 (28) of the patients were poor metabolizers and 52 (52) and 20 (20) poor metabolizers respectively. 

The mean steady-state drug plasma concentration (Cuss) of poor metabolizers (mean 150.3 +- 45.7 mg/mL) was 

significantly greater than that of normal metabolizers (mean 98.2 +- 30.5 mg/mL; p = 0. 003). The Cuss (mean 78.9 

+- 25.1 mg/mL) of the ultra-rapid metabolizers was lower than that of normal metabolizers (p = 0.01). In terms of 

clinical efficacy, 80% of normal metabolizers attained predefined therapeutic response (e.g. symptom reduction), 

versus 50% in the poor metabolizers (p = 0.04). Ultra rapid metabolizers had a 75% response rate, which was not 

significantly different as compared to normal (p = 0.21). Incidence of adverse events was 40 in poor metabolizers 

versus 15 in normal metabolizers (p = 0.01), and the frequent toxicities included drug-induced nausea, elevation of 

liver enzymes, or neurotoxicity. Multivariate regression showed that metabolizer status was independently related to 

both drug concentration (b = 0.45, 95%CI 0.20-0.70, p = 0.001) and adverse event risk (OR 3.2, 95%CI 1.4-7.2, p = 

0.005), after controlling age, sex and co-medications. 

Table 1. Baseline demographic characteristics of patients (N = 100). 

Variable Value 

Mean age (years ± SD) 54.2 ± 11.8 

Sex (Male / Female) 48 (48%) / 52 (52%) 

Mean body weight (kg ± SD) 71.5 ± 12.3 

Disease duration (years) 6.4 ± 3.2 

Coeducation use (%) 38 (38%) 

Table 1: Demographic baseline characteristics within the 100 patient cohort, enumerating the mean age 54.2 ± 11.8 

years, the sex distribution  (Males 48% & Females 52%), body weight 71.5 ± 12.3 kg, mean disease duration 6.4 ± 

3.2 years, and  co-educational use 38%. 

Table 2. Distribution of metabolizer phenotypes based on genotyping. 

 

 

 

 

Table 2: Distribution of metabolizer phenotypes based on genotyping with the Normal metabolizers making the 

majority 52% followed  Poor metabolizers 28% and  Ultra-rapid 20%   

 

Phenotype Patients (n) Percentage (%) 

Poor metabolizers 28 28% 

Normal metabolizers 52 52% 

Ultra rapid metabolizers 20 20% 

Total 100 100% 
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Table 3. Mean steady-state plasma concentrations across metabolizer groups. 

Group Mean concentration (mg/mL ± SD) p-value (vs. Normal) 

Poor metabolizers 150.3 ± 45.7 0.003 

Normal metabolizers 98.2 ± 30.5 Reference 

Ultra rapid metabolizers 78.9 ± 25.1 0.010 

Table 3: Mean steady-state plasma drug concentration across metabolizer. Poor metabolizers with concentration of 

150.3 ± 45.7 mg/mL (p = 0.003) and normal metabolizers 98.2 ± 30.5 mg/mL (which is the reference) were 

compared, where as ultra-rapid with  78.9 ± 25.1 mg/mL (p = 0.010)  showed lower levels. 

 Table 4. Treatment response rates among metabolizer groups. 

Group Responder’s n (%) Non-responders n (%) p-value 

Poor metabolizers 14 (50.0%) 14 (50.0%) 0.040 

Normal metabolizers 42 (80.8%) 10 (19.2%) Ref 

Ultra rapid metabolizers 15 (75.0%) 5 (25.0%) 0.210 

 

Table 4: Treatment response rates with Poor metabolizers 50% remaining lower compared to normal metabolizers 

80.8% (which is the reference)  with p = 0.040. Ultra-rapid metabolizers showed a response of 75% which was 

statistically non-significant with p = 0.210. 

Table 5. Adverse events across metabolizer groups. 

Group Adverse events n (%) Common toxicities observed p-value 

Poor metabolizers 11 (39.3%) Nausea, liver enzyme elevation, neurotoxicity 0.010 

Normal metabolizers 8 (15.4%) Mild nausea, dizziness Ref 

Ultra rapid metabolizers 3 (15.0%) Mild headache 0.310 

Table 5: Adverse events across metabolizer groups. Of note, poor metabolizers had the highest incidence (39.3%) of 

nausea, elevated liver enzymes, and neurotoxicity (p = 0.010). Normal metabolizers had a lower frequency of 

adverse events (15.4%) consisting mostly of mild nausea and dizziness (reference). Ultra-rapid metabolizers also 

had a lower frequency (15.0%) of events, consisting of mild headache (p = 0.310). 

DISCUSSION 

We have shown poor metabolizers had 

significantly higher steady-state drug plasma 

levels, poorer response, and higher adverse 

events compared to normal metabolizers in this 

study of 100 patients stratified by their 

metabolizer status (poor, normal, ultra rapid), 

and have also shown that, ultra-rapid 

metabolizers had lower drug levels, reduced 

therapeutic response (which was not statistically 

significant), and fewer adverse events. Such 

results are consistent with, and build on, prior 

studies in the pharmacokinetics that have 

measured the effects of CYP enzyme variability 

on pharmacokinetics and clinical outcomes. In a 

study of patients receiving metoprolol, Wattle et 

al. found that poor metabolizers of CYP2D6 had 

a plasma concentration that was 3- to 10-fold 

higher than extensive metabolizers, and were at 

risk of b -blocker-related adverse effects about 

5-fold more often [11]. This correlates with our 

observation that poor metabolizers exhibited 

much higher mean concentrations (150.3 mg/mL 

vs. ~98.2 mg/mL in normal; p = 0.003), and 

more adverse events (40% vs. 15%; p = 0.01). 

The above idea is further endorsed by recent 

findings on LSD metabolism Lu et al. (2011) 
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found that schizophrenic patients carrying 

CYP2D6 10 had elevated risperidone + 

metabolite plasma concentrations and adverse 

effects incidence, compared to those without the 

allele [12].Recent study on LSD metabolism 

further supports the idea that CYP2D6 genotype 

is a strong predictor of drug exposure: in a 

pooled Phase I study, poor metabolizers were 

found to have an approximately 75 fold That is 

equivalent to our findings where poor 

metabolizers have an increased steady-state level 

by far and would be the source of the enhanced 

risk of adverse outcomes. On the efficacy axis, 

risperidone studies depicted comparable trends-

whereas the CYP2D6 genotype affected plasma 

concentrations, the impact on clinical response 

has not always been that strong or significant 

[14].Indicatively, some risperidone studies have 

not found any significant correlation between the 

CYP2D6 genotype and reduction in the 

symptoms despite an evidently high PK 

difference. This is consistent with our 

observation that, although poor metabolizers 

(50) responded lower than normal (80), ultra 

rapid metabolizers (75) did not respond 

significantly worse than normal (p = 0.21) [15]. 

Therefore, probably, exposure to drugs is a 

factor that influences efficacy, but additional 

factors (downstream pharmacodynamics, 

receptor sensitivity, coeducations) mediate the 

clinical effect. We also find these results in 

tamoxifen therapy: weaker CYP2D6 

metabolizers have poorer efficacy, including 

lower mammographic density decrease or higher 

dropout [16]. These data indicate the external 

validity of our results, that metabolizer status is 

a significant predictor of both drug concentration 

and clinical outcome when controlled by age, 

sex, and co-medication (b = 0.45 to predict 

concentration; OR 3.2 to predict risk of adverse 

event). Moreover, a recent population PK model 

of a drug with CYP2D6 dependency has 

demonstrated that incorporating metabolizer 

status significantly enhances model fit, reduced 

unexplained variability and better predicts 

steady state exposure [17].Nonetheless, there are 

gaps in the literature that our study can help to 

fill in. Other studies have found that ultra-rapid 

metabolizer hasten clearer, lesser plasma levels, 

and even less effective in some cases; however, 

in other cases, the response rates in ultra-rapid 

groups are not always notably lower. In one 

example, the very rapid or high-activity 

phenotypes were found to have lower drug 

concentrations, but the same level of symptom 

reduction in some risperidone cohorts [18]. This 

is in line with our observation that ultra-rapid 

metabolizers showed much lower Cuss yet 

response rate (75%) was not significantly 

different compared to normal (p = 0.21). Such 

discrepancies could be due to dose-adjustment 

by clinical (greater dose in ultra-rapids), 

adherence variability, or drug 

pharmacodynamics. On another dimension is 

adverse events. Poor metabolizers are more 

prone to side effects as demonstrated by other 

previous studies: metoprolol overdose-like effect 

in poor CYP2D6 carriers; or increased 

neurological or metabolic adverse events in 

risperidone poor metabolizers [19].Our 40 

percent adverse event percentage is closely 

aligned with previous studies. Interesting results 

also exist in other classes of drugs. Indicatively, 

the pharmacokinetic of atomoxetine indicates 

that in poor CYP2D6 metabolizers, AUCs and 

peak concentrations are higher by 2-folds 

compared to extensive metabolizers [20-22]. 

Which is within the range of the differences we 

observed. Likewise, with drugs that have low 

therapeutic indices or high toxicity (as in some 

antidepressants, antipsychotics, tamoxifen), 

minute changes in exposure may shift the risk-

benefit relationship[23]. Our strengths are that 

we have well-defined metabolizer genotypes, 

steady-state concentrations are measured, 

outcome definitions are standardized, and we 

have multivariate adjustment. Moderate size, 

focus on single drug (or homogenous drug 

group), and relatively short follow-up (not able 

to establish long-term follow-up) are limitations. 

LIMITATIONS 

This study had a limitation in the small size of 

the sample, single center study, and the short 

follow up period. The ultrarapid metabolizer 

subgroups were also small and this limited 

statistical power capabilities. Moreover, there 

were some non-genetic correlates such as 

adherence, environmental factors and 

coeducations that might have contributed to 

variability of treatment outcome identified. 
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CONCLUSION 

The genetic variations were important in establishing 

the levels of drugs in the plasma, therapeutic 

response of drugs and probability of adverse events in 

our cohort. To maximize treatment, minimize the 

toxicity and improve the outcome, pharmacokinetic 

testing can be integrated in clinical practice. These 

findings show the necessity of using precision 

medicine to inform safer and more effective 

prescribing practices. 

FUTURE DIRECTIONS 

These should be tested by more extensive multicenter 

prospective studies in other populations. Next-

generation sequencing can be more helpful in the 

incorporation of complex pharmacokinetic variation. 

The current research also needs to be preoccupied 

with the application of genotype-based dosing 

programs and cost-effectiveness, clinical outcomes, 

and long-term outcomes in the daily medical practice. 
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