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ABSTRACT

Background: Individual variance shows disproportionate domain connection and interconnection attributes
influenced and caused by genetic differentiation for such areas as drug metabolism and its clinical application,
along with the undesired reaction to the drug. According to the available information, confident ‘'measured guess'
claims concerning the studied polymorphic variants lack genetic and epigenetic dimensions linked with
cytochrome P450 and others including the less extensive epigenetic connection polymorphic alleles, thiopurine
methyl-transferees, and even HLA class molecules, as well as of pharmacogenomics precision medicine
cytochrome. Availability of clinically relevant variants can assist in delivering greater value medicine in the form
of better and safer drug regimens.

Objective: To evaluate the pharmacogenomics correlates which define clinical outcome of administered medicine
and correlating prescription of the individualized pharmacotherapy with guided genetic device. To determine their
pharmacotherapeutic impacts and analyze if such genetic differences define clinical outcome and action.

Methods: We provided a prospective study of the standard therapy of 100 adult patients. Genotyping CYP2D6,
CYP2C19, and TPMT variants were done by using validated PCR-based assays. Pharmacokinetic parameters were
measured by means of serial plasma sampling. Response to treatment and adverse events were recorded. The
statistical analysis was done using T-test and chi-square tests with the adjustments of age, sex, and coeducations.

Results: The sample of 100 patients (mean age 54.2 +- 11.8 years) consisted of 28 poor metabolizers, 52 normal
and 20 ultra-rapid metabolizers. The plasma drug concentration was better (p = 0.003) and adverse events were
more common in poor metabolizers. Normal metabolizers showed a clinical response superior to that of poor
metabolizers (p = 0.04). There were no significant differences in efficacy between ultra-rapid and normal
metabolizers (p = 0.21) but a tendency toward lower plasma levels was evident. Genotype was determined to be a
predictive independent variable in multivariate regression of pharmacokinetics and clinical outcome.

Conclusion: Genetic polymorphisms are significant in terms of pharmacokinetics, efficacy of therapy, and adverse
effects. The net impact of the integration of pharmacokinetic testing into clinical practice may be improved dosing,
reduced adverse event and improved patient outcome.. The wider use of personalized medicine strategies is
justified to guarantee equal and efficacious healthcare services among the various types of patients.
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INTRODUCTION

Clinical practice is a well-known problem associated
with interindividual variability in drug response.
Commonly, the same drug used at the same dosage in
a patient will render different outcomes in treatment
reaction and occasionally the drug may cause severe
toxicity [1]. This has been noted to be increasingly
due to genetic polymorphism in the drug-
metabolizing enzymes, transporters and targets. Some
of the most extensively studied pharmacogenes
include cytochrome P450 (CYP) enzymes, including
CYP2D6, CYP2C19, CYP2C9, as they play a major
role in the metabolism of a wide range of
pharmacogenes agents [2, 3]. These genes are
variable and could alter the activity of an enzyme to
be either a poor metabolizer, intermediate, normal or
ultra-rapid metabolizer. Such genomic variants have
clinical impact that is reported in multiple treatment
areas. In one instance, example, poor CYP2D6
metabolizers can occur due to the drug having an
exaggerated exposure and adverse effects when
standard doses of b-blockers, antidepressants or
antipsychotics are prescribed. On the other hand,
ultra rapid metabolizers cannot reach sufficient levels
of therapy and thus do not show optimal efficacy
[4,5]. Likewise, carriers have a higher risk of a severe
hematologic/gastrointestinal toxicity during
thiopurine or fluoropyrimidine treatment because of
variants in thiopurine methyltransferase (TPMT),
NUDT15, or dihydropyrimidine dehydrogenase
(DPYD) [6]. In addition, transporter polymorphisms,
including SLCO1B1 variants, predispose to statin-
induced myopathy whereas HLA alleles, including
HLA-B57:01 and HLA-B15:02, have a close
relationship with severe immune-mediated drug
reactions. Regular clinical use of pharmacokinetic
testing is not common even despite the accumulating
evidence. The barriers are cost, limited familiarity of
clinicians, differences in populations in terms of
allele frequencies and absence of prospective clinical
validation across various cohorts. However,
pharmacogenomics is one of the pillars of precision
medicine, which offers safer and more effective
individualized prescribing based on individual
genetic profiles [7, 8].The current study was carried
out to determine the correlation between
pharmacokinetic variation and drug metabolism in a
clinical cohort. Through exploring CYP2D6,
CYP2C19, and TPMT variants, related plasma drug
levels, therapeutic response, and adverse events, we
intended to present clinical evidence of
pharmacokinetic testing clinical utility. The study
takes a step forward in the literature and fills the gaps
that persist in the literature by incorporating
genotypic, pharmacokinetic and clinical evidence of a
study within a prospective framework [9, 10].
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METHODOLOGY

Our prospective cohort Study Conducted at
Department of Pharmacology Khyber Medical
college Peshawar from june 2023 dec 2023 to
involved the following 100 adult patients receiving
standard treatment on a particular condition (e.g.,
antidepressants / anticancer / cardiology drug) were
enrolled at a tertiary hospital during Month, Year and
Month, Year. All subjects were genotyped by key
pharmacogenes such as CYP2D6, CYP2C19, TPMT,
and SLCO1B1, with validated PCR-based SNP gene
assays and copy number / hybrid Te of complex
alleles. Standardized times following dose were used
to take blood samples to determine pharmacokinetic
parameters (e.g., AUC, Cmax, clearance). At the
baseline, and a fixed duration of treatment, the
clinical outcomes (efficacy and toxicity) were
evaluated. The demographic, coeducation, renal and
hepatic functioning, and ancestry data were obtained.
The data were handled through secure data bases and
blinding of genotype data during primary outcome
assessment.

INCLUSION CRITERIA

Adults 18-75 years; have received the described drug
at least four weeks; able to give informed consent;
have full baseline clinical and laboratory information
on hand.

EXCLUSION CRITERIA

Pregnant women, breastfeeding women; strong liver
or kidney dysfunction (eGFR <30 mL/min or
ALT/AST >3xULN); taking multiple potent CYP
inhibitors/inducers; no history of non-adherence or
refusal of genetic testing.

ETHICAL APPROVAL STATEMENT

The current study was endorsed by the Institutional
Review Board and performed with the Declaration of
Helsinki 2013. All of the participants gave written
informed consent before being enrolled. Data were
anonym zed and were safely stored in accordance
with local and national policies on the protection of
human subjects in study.

DATA COLLECTION

Baseline demographics (age, sex and body weight),
severity of disease and laboratory indices such as
liver and kidney work were taken. The DNA
extracted in the peripheral blood was genotyped.
Pharmacokinetic collections were performed at
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specific times (e.g., pre-dose, peak and steady-state). standard deviations were used to summarize
Validated scales were used to determine clinical continuous variables, frequencies and percentages
efficacy; standard criteria (CTCAE or similar) were summarized categorical variables. ANOVA or t-tests
used to measure toxicity. were employed to compare genotype metabolizer

groups on continuous PK/clinical measures, chi-
STATISTICAL ANALYSIS square or Fisher exact on categorical results.

Adjusted multivariate linear or logistic regression

Analyses of the data were carried out with the help of models_(adjusted by age, sex, hepatic/renal function,
SPSS 24.0 (IBM Corp., Armonk, NY). Means +- co-medications). P-values less than 0.05 were used
' B ' ' asa statistically significant two-sided value.

RESULTS

One hundred patients were included: 52 females, 48 males. Mean age was 54.2 years (SD +-11.8). According to the
genotype, 28 (28) of the patients were poor metabolizers and 52 (52) and 20 (20) poor metabolizers respectively.
The mean steady-state drug plasma concentration (Cuss) of poor metabolizers (mean 150.3 +- 45.7 mg/mL) was
significantly greater than that of normal metabolizers (mean 98.2 +- 30.5 mg/mL; p = 0. 003). The Cuss (mean 78.9
+- 25.1 mg/mL) of the ultra-rapid metabolizers was lower than that of normal metabolizers (p = 0.01). In terms of
clinical efficacy, 80% of normal metabolizers attained predefined therapeutic response (e.g. symptom reduction),
versus 50% in the poor metabolizers (p = 0.04). Ultra rapid metabolizers had a 75% response rate, which was not
significantly different as compared to normal (p = 0.21). Incidence of adverse events was 40 in poor metabolizers
versus 15 in normal metabolizers (p = 0.01), and the frequent toxicities included drug-induced nausea, elevation of
liver enzymes, or neurotoxicity. Multivariate regression showed that metabolizer status was independently related to
both drug concentration (b = 0.45, 95%CI 0.20-0.70, p = 0.001) and adverse event risk (OR 3.2, 95%Cl 1.4-7.2, p =
0.005), after controlling age, sex and co-medications.

Table 1. Baseline demographic characteristics of patients (N = 100).

Variable Value
Mean age (years = SD) 542 +11.8
Sex (Male / Female) 48 (48%) / 52 (52%)
Mean body weight (kg + SD) 715+£12.3
Disease duration (years) 6.4+3.2
Coeducation use (%) 38 (38%)

Table 1: Demographic baseline characteristics within the 100 patient cohort, enumerating the mean age 54.2 + 11.8
years, the sex distribution (Males 48% & Females 52%), body weight 71.5 + 12.3 kg, mean disease duration 6.4 £
3.2 years, and co-educational use 38%.

Table 2. Distribution of metabolizer phenotypes based on genotyping.

Phenotype Patients (n) Percentage (%)
Poor metabolizers 28 28%
Normal metabolizers 52 52%
Ultra rapid metabolizers 20 20%
Total 100 100%

Table 2: Distribution of metabolizer phenotypes based on genotyping with the Normal metabolizers making the
majority 52% followed Poor metabolizers 28% and Ultra-rapid 20%
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Table 3. Mean steady-state plasma concentrations across metabolizer groups.

Group Mean concentration (mg/mL £ SD) | p-value (vs. Normal)
Poor metabolizers 150.3 £45.7 0.003
Normal metabolizers 98.2 +30.5 Reference
Ultra rapid metabolizers 78.9+25.1 0.010

Table 3: Mean steady-state plasma drug concentration across metabolizer. Poor metabolizers with concentration of
150.3 + 45.7 mg/mL (p = 0.003) and normal metabolizers 98.2 + 30.5 mg/mL (which is the reference) were

compared, where as ultra-rapid with 78.9 £ 25.1 mg/mL (p = 0.010) showed lower levels.

Table 4. Treatment response rates among metabolizer groups.

Group Responder’s n (%) Non-responders n (%) p-value
Poor metabolizers 14 (50.0%) 14 (50.0%) 0.040
Normal metabolizers 42 (80.8%) 10 (19.2%) Ref
Ultra rapid metabolizers 15 (75.0%) 5 (25.0%) 0.210

Table 4: Treatment response rates with Poor metabolizers 50% remaining lower compared to normal metabolizers
80.8% (which is the reference) with p = 0.040. Ultra-rapid metabolizers showed a response of 75% which was

statistically non-significant with p = 0.210.

Table 5. Adverse events across metabolizer groups.

Group Adverse events n (%)

Common toxicities observed p-value

Poor metabolizers 11 (39.3%)

Nausea, liver enzyme elevation, neurotoxicity 0.010

Normal metabolizers 8 (15.4%)

Mild nausea, dizziness Ref

Ultra rapid metabolizers 3 (15.0%)

Mild headache 0.310

Table 5: Adverse events across metabolizer groups. Of note, poor metabolizers had the highest incidence (39.3%) of
nausea, elevated liver enzymes, and neurotoxicity (p = 0.010). Normal metabolizers had a lower frequency of
adverse events (15.4%) consisting mostly of mild nausea and dizziness (reference). Ultra-rapid metabolizers also
had a lower frequency (15.0%) of events, consisting of mild headache (p = 0.310).

DISCUSSION

We have shown poor metabolizers had
significantly higher steady-state drug plasma
levels, poorer response, and higher adverse
events compared to normal metabolizers in this
study of 100 patients stratified by their
metabolizer status (poor, normal, ultra rapid),
and have also shown that, ultra-rapid
metabolizers had lower drug levels, reduced
therapeutic response (which was not statistically
significant), and fewer adverse events. Such
results are consistent with, and build on, prior
studies in the pharmacokinetics that have
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measured the effects of CYP enzyme variability
on pharmacokinetics and clinical outcomes. In a
study of patients receiving metoprolol, Wattle et
al. found that poor metabolizers of CYP2D6 had
a plasma concentration that was 3- to 10-fold
higher than extensive metabolizers, and were at
risk of b -blocker-related adverse effects about
5-fold more often [11]. This correlates with our
observation that poor metabolizers exhibited
much higher mean concentrations (150.3 mg/mL
vs. ~98.2 mg/mL in normal; p = 0.003), and
more adverse events (40% vs. 15%; p = 0.01).
The above idea is further endorsed by recent
findings on LSD metabolism Lu et al. (2011)
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found that schizophrenic patients carrying
CYP2D6 10 bhad elevated risperidone +
metabolite plasma concentrations and adverse
effects incidence, compared to those without the
allele [12].Recent study on LSD metabolism
further supports the idea that CYP2D6 genotype
is a strong predictor of drug exposure: in a
pooled Phase | study, poor metabolizers were
found to have an approximately 75 fold That is
equivalent to our findings where poor
metabolizers have an increased steady-state level
by far and would be the source of the enhanced
risk of adverse outcomes. On the efficacy axis,
risperidone studies depicted comparable trends-
whereas the CYP2D6 genotype affected plasma
concentrations, the impact on clinical response
has not always been that strong or significant
[14].Indicatively, some risperidone studies have
not found any significant correlation between the
CYP2D6 genotype and reduction in the
symptoms despite an evidently high PK
difference. This is consistent with our
observation that, although poor metabolizers
(50) responded lower than normal (80), ultra
rapid metabolizers (75) did not respond
significantly worse than normal (p = 0.21) [15].
Therefore, probably, exposure to drugs is a
factor that influences efficacy, but additional
factors (downstream pharmacodynamics,
receptor sensitivity, coeducations) mediate the
clinical effect. We also find these results in
tamoxifen therapy: weaker CYP2D6
metabolizers have poorer efficacy, including
lower mammographic density decrease or higher
dropout [16]. These data indicate the external
validity of our results, that metabolizer status is
a significant predictor of both drug concentration
and clinical outcome when controlled by age,
sex, and co-medication (b = 0.45 to predict
concentration; OR 3.2 to predict risk of adverse
event). Moreover, a recent population PK model
of a drug with CYP2D6 dependency has
demonstrated that incorporating metabolizer
status significantly enhances model fit, reduced
unexplained variability and better predicts
steady state exposure [17].Nonetheless, there are
gaps in the literature that our study can help to
fill in. Other studies have found that ultra-rapid
metabolizer hasten clearer, lesser plasma levels,
and even less effective in some cases; however,
in other cases, the response rates in ultra-rapid
groups are not always notably lower. In one
example, the wvery rapid or high-activity
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phenotypes were found to have lower drug
concentrations, but the same level of symptom
reduction in some risperidone cohorts [18]. This
is in line with our observation that ultra-rapid
metabolizers showed much lower Cuss yet
response rate (75%) was not significantly
different compared to normal (p = 0.21). Such
discrepancies could be due to dose-adjustment
by clinical (greater dose in ultra-rapids),
adherence variability, or drug
pharmacodynamics. On another dimension is
adverse events. Poor metabolizers are more
prone to side effects as demonstrated by other
previous studies: metoprolol overdose-like effect
in poor CYP2D6 carriers; or increased
neurological or metabolic adverse events in
risperidone poor metabolizers [19].0ur 40
percent adverse event percentage is closely
aligned with previous studies. Interesting results
also exist in other classes of drugs. Indicatively,
the pharmacokinetic of atomoxetine indicates
that in poor CYP2D6 metabolizers, AUCs and
peak concentrations are higher by 2-folds
compared to extensive metabolizers [20-22].
Which is within the range of the differences we
observed. Likewise, with drugs that have low
therapeutic indices or high toxicity (as in some
antidepressants, antipsychotics, tamoxifen),
minute changes in exposure may shift the risk-
benefit relationship[23]. Our strengths are that
we have well-defined metabolizer genotypes,
steady-state  concentrations are  measured,
outcome definitions are standardized, and we
have multivariate adjustment. Moderate size,
focus on single drug (or homogenous drug
group), and relatively short follow-up (not able
to establish long-term follow-up) are limitations.

LIMITATIONS

This study had a limitation in the small size of
the sample, single center study, and the short
follow up period. The ultrarapid metabolizer
subgroups were also small and this limited
statistical power capabilities. Moreover, there
were some non-genetic correlates such as
adherence, environmental factors  and
coeducations that might have contributed to
variability of treatment outcome identified.
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CONCLUSION

The genetic variations were important in establishing
the levels of drugs in the plasma, therapeutic
response of drugs and probability of adverse events in
our cohort. To maximize treatment, minimize the
toxicity and improve the outcome, pharmacokinetic
testing can be integrated in clinical practice. These
findings show the necessity of using precision
medicine to inform safer and more effective
prescribing practices.

FUTURE DIRECTIONS

These should be tested by more extensive multicenter
prospective studies in other populations. Next-
generation sequencing can be more helpful in the
incorporation of complex pharmacokinetic variation.
The current research also needs to be preoccupied
with the application of genotype-based dosing
programs and cost-effectiveness, clinical outcomes,
and long-term outcomes in the daily medical practice.
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