

Original Article

Comparative Study Of Typhoid Fever Presentation In Adults Vs. Children In Endemic Regions.

Sadaf Alam¹, Izaz Zahid², Marwan khan³

- Assistant Professor Pediatrics Peshawar Institute of Medical Sciences Peshawar
- ^{2.} TMO Peads, North West General Hospital Peshawar
- 3. TMO Peads North West General Hospital Peshawar

Article Metadata

Corresponding Author

Izaz Zahid

TMO Peads, North West General Hospital

Peshawar

Email: <u>izazk1192@gmail.com</u>

https://orcid.org/0000-0002-3908-5748

Article History

Received: 20th April, 2024

Revised: 16th May, 2024

Accepted:26^h June,2024

Published 05th July ,2025

ABSTRACT

Background: Typhoid fever is a systemic infection primarily caused by Salmonella Typhi, and it is primarily acquired by consuming contaminated food and water. Typhoid fever remains widely transmitted and endemic in several lower and middle-income countries. Additionally, the disease presents differently in adults and children. For precise and timely treatment and diagnosis, it is essential to recognize both the classical and unusual features of the infection in both adults and children.

Objectives: to describe the adult and pediatric population in typhoid fever endemic countries relative to the disease clinical presentation, complications, and investigations. This will thus provide a basis for improved clinical management for each age group.

Methodology: This study was conducted from July to December 2023 as a cross-sectional comparative study over six months at the Departments of Pediatrics, Peshawar Institute of Medical Sciences, Peshawar. Fifty patients attending the institute with a diagnosis of typhoid fever on blood culture and Widal test, and who met the inclusion criteria, were recruited. These patients were divided into two age categories, adults (≥ 18 years of age) and children (≤ 18 years of age). Patients' clinical features, lab results, and clinical outcomes were documented and reviewed. Data were analyzed on SPSS 24.0 using descriptive and inferential statistics. A p-value ≤ 0.05 was considered statistically significant.

Results:120 patients were adults, and the rest were children. Adult patients, on Mean age 29.6 ± 8.4 years old, and children were 10.2 ± 3.7 years old. Children experienced fever and had abdominal pain and diarrhea, whereas adults chiefly had a headache with constipation and muscular pain. While the children had a greater incidence of leukopenia than the adults (p = 0.032), the adults had a greater incidence of elevated ALT results (p = 0.018). A greater number of younger patients had medically complicated conditions.

Conclusion: The clinical presentation of typhoid fever varies with age—children commonly exhibit gastrointestinal symptoms with hepatosplenomegaly, while adults show systemic involvement and altered liver function. Recognizing these age-related patterns is vital for timely diagnosis and improved treatment outcomes in resource-limited settings.

Keywords: Typhoid, clinical comparison, pediatrics, adults.

DOI: https://doi.org/10.64911/c994n740

This article may be cited as:

Alam S, Zahid I, Khan M. Comparative study of typhoid fever presentation in adults versus children in endemic regions. J Pak Int Med Coll. 2025;2(1):61–66.

INTRODUCTION

The life-threatening bloodstream infection known as typhoid fever keeps causing medical worry in underdeveloped nations, together with their resourcelimited regions, along with South Asian territories and African subregions. Transmission occurs mainly due to Fecal-oral exposure from contaminated food and water sources, which are often linked to inadequate sanitary conditions [1]. The detection methods alongside antibiotic-based treatments have not eliminated typhoid because the disease remains endemic worldwide, affecting adults and children from different social classes [2]. Gloomily, 11-20 million people contract typhoid annually, leading to 128,000–161,000 fatalities [3]. Population-based typhoid incidence remains high in Pakistan, along with India and Bangladesh, as well as in specific areas of Africa, due to these regions having weak public health systems and limited access to drinking water facilities [4]. The disease course of typhoid fever differs between adults and children due to variations in clinical symptoms, which impact proper diagnosis and the provision of appropriate medical care [5]. In paediatric patients, typhoid fever commonly displays symptoms including high fever, stomach pain, vomiting, and diarrhea along with enlarged liver and spleen [6]. The delayed diagnosis and treatment of paediatric typhoid fever patients make them more susceptible to intestinal perforation along with encephalopathy and severe anaemia [7]. Systemic symptoms, which may include headaches, muscle pain, constipation, and altered mental state, are generally manifested by adults, who, unlike children, display diminished gastrointestinal complications [8]. It appears these differences stem from age-related immunological changes, as well as differences in communication, nutrition, and overall health states. Specific age-related symptoms, particularly in the absence of complex intercurrent illnesses or conditions, are critical for health service providers in the frontline of busy emergency and outpatient departments. Such symptoms are essential for differentiating viral fevers from malaria, as well as dengue from tuberculosis [9]. In addition to age, demographics, and clinical settings, such variations can also be predicted by laboratory tests [10]. For adults, the combination of electrolyte imbalances and liver dysfunction typically indicates typhoid fever. In contrast, children with the illness typically present with acute kidney injury, characterized by a decrease in white blood cells and platelets, and an increase in Creactive protein [10]. The proper diagnosis and agerelated classification of typhoid fever are critical in the face of rising cases of typhoid fever due to extensively drug-resistant bacteria, particularly prevalent in Sindh, Pakistan, from where the strains of XDR bacteria are

most likely to emerge [11]. This study aims to describe the clinical features of typhoid fever using an agerelated comparative approach. The most significant impact on reducing morbidity and mortality would be optimally achieved if medical planning, diagnosis, and earlier intervention in the disease are all centered on the patient's age.

MATERIAL AND METHODS

Study design & Setting: This study was conducted from July to December 2023 as a cross-sectional comparative study over six months at the Departments of Pediatrics, Peshawar Institute of Medical Sciences, Peshawar.the medical and pediatric departments functioning as study sites within their respective endemic areas. Blood cultures and the Widal test confirmed the diagnosis of typhoid fever in the 120 patients enrolled. The study population was divided into two groups: Group A for adult patients aged 18 and older, and Group B for minors aged 18 and younger. The investigators collected clinical data, which included patient symptomatology, vital signs, and laboratory results, including complete blood counts, liver function tests, and CRP levels. Ethical approval for the study was obtained from the institutional review board, and informed consent for participation was obtained from the patients or their guardians. This study aimed to determine the most effective treatment for recognition in highly infected regions by assessing symptomatology and blood test results in adult and pediatric patients.

INCLUSION CRITERIA

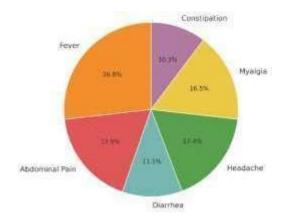
Hospital patients from age one and above who received a blood culture or Widal test diagnosis for typhoid fever while presenting within ten days of the onset of their symptoms.

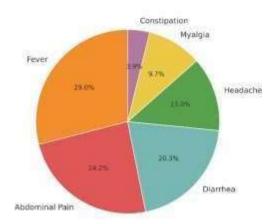
EXCLUSION CRITERIA

The study did not accept patients having dengue or malaria co-infections, nor individuals who were immunocompromised or suffering from conditions including liver cirrhosis or tuberculosis.

DATA COLLECTION

Operational data collection was conducted through a standard proforma system, which recorded patient demographics, symptom commencement details and duration, vital signs, physical findings, and test results. Two independent reviewers verified the accuracy and completeness of all collected data before performing statistical analysis.


STATISTICAL ANALYSIS


The data analysis was conducted using SPSS version 24.0. The independent sample t-tests analyzed continuous variables, which were reported as mean \pm standard deviation. The Chi-square test served to analyze both categories of data. All statistical tests used a p-value of less than 0.05 to determine significance in the differences between adult and pediatric groups.

RESULTS

The study included a total of 120 patients, split between 60 adults and 60 children. The study participants in the adult group had an average age of 29.6 ± 8.4 years, and participants in the paediatric group had an average age of 10.2 ± 3.7 years. Every patient in both age groups experienced fever symptoms, which became the most frequent symptom during the study period. The majority of children experienced symptoms of abdominal pain (83.3%) along with diarrhea (70%), while adults mainly reported headache (65%) coupled with myalgia symptoms (61.6%). Adults experienced constipation in 38.3% of cases, whereas children presented with this symptom only in 13.3% (p = 0.014). At the same time, leukopenia affected 46.6% of children but occurred in 28.3% of adults with statistical significance (p = 0.032). Nearly two-fifths (40%) of adult patients exhibited elevated ALT levels, whereas only one-fifth (20%) of child patients showed this finding 0.018). Children (p hepatosplenomegaly in 42% of cases while this condition appeared in 30% of adults with a significant statistical difference (p = 0.041). Between children and adults, the overall complication rate was 20% in children and 13.3% in adults, without reaching statistical significance (p = 0.219). The results demonstrate that it is crucial to identify different agespecific characteristics present in patients suffering from the condition.

Figure 1. Symptom Distribution in Adults and Children with Typhoid Fever

The figure shows symptom prevalence for both adults and children diagnosed with typhoid fever. Fever was systematic (100%) in both groups. Abdominal pain (83.3%) and diarrhea (70.0%) were more prevalent in children, while myalgia (61.6%) and headache (65.0%) were more common in adults. adults were constipated more (38.3%) than children were (13.3%).

Table 1. Demographic Characteristics of Patients With Typhoid Fever

Variable	Adults (n=60)	Children (n=60)	Total (N=120)	Statistical Test Used	<i>p</i> -value
Mean Age (years)	29.6 ± 8.4	10.2 ± 3.7	22.8 ± 14.5	Independent t-test	<0.001
Sex (Male), n (%)	35 (58.3%)	32 (53.3%)	67 (55.8%)	Chi-square test	0.61
Sex (Female), n (%)	25 (41.7%)	28 (46.7%)	53 (44.2%)	Chi-square test	0.61

Table 1 summarizes demographic characteristics of adults and children with typhoid fever. Adults had a significantly higher mean age. Sex distribution did not differ significantly between groups.

Table 2. Symptom Distribution in Adults and Children With Typhoid Fever

Symptom	Adults n (%)	Children n (%)	Statistical Test Used	<i>p</i> -value
Fever	60 (100.0%)	60 (100.0%)	_	_
Abdominal Pain	40 (66.6%)	50 (83.3%)	Chi-square test	0.04
Diarrhea	25 (41.6%)	42 (70.0%)	Chi-square test	0.01
Headache	39 (65.0%)	27 (45.0%)	Chi-square test	0.03
Myalgia	37 (61.6%)	20 (33.3%)	Chi-square test	0.01
Constipation	23 (38.3%)	8 (13.3%)	Chi-square test	0.005

Table 2 shows the distribution of clinical symptoms. Fever was universal. Abdominal pain and diarrhea were more frequent in children, whereas headache, myalgia, and constipation were significantly more common in adults.

Table 3. Laboratory Findings in Adults and Children With Typhoid Fever

Parameter	Adults (Mean ± SD)	Children (Mean± SD)	Statistical Test Used	p- value
Haemoglobin (g/dL)	10.5 ± 1.4	9.8 ± 1.3	Independent t-test	0.02
WBC (×109/L)	7.6 ± 2.1	8.2 ± 2.3	Independent t-test	0.12
Platelets (×10°/L)	210 ± 45	230 ± 52	Independent t-test	0.09
Serum Ferritin (ng/mL)	14.8 ± 5.2	12.3 ± 4.6	Independent t-test	0.03
ESR (mm/hr)	40.6 ± 12.1	42.8 ± 11.4	Independent t-test	0.42

Table 3 compares hematological parameters between adults and children. Adults had significantly higher hemoglobin and ferritin levels, whereas WBC, platelets, and ESR did not differ significantly.

DISCUSSION

Our study indicate that there are significant age-related differences in the clinical manifestations of typhoid fever and Laboratory results. This implies that regions endemic for typhoid fever need to tailor their policies to the specific age groups. All patients had a fever, which can be explained by previous studies stating that fever is a universal symptom of typhoid fever, regardless of age [12]. The symptom of abdominal pain and diarrhea is most commonly seen in children, and the predominance of headache, myalgia, and constipation in adults suggests that there is a distinct

age-related differentiation in the manifestations of the disease. The results by Sinha et al. and Bhutta et al. also support this, as the children exhibited nonspecific gastrointestinal symptoms and hepatosplenomegaly, while adults presented with myalgia and systemic malaise, which are important features that aid in the recognition of the disease in adults [13, 14]. Our study found significant differences in the symptoms of myalgia and other symptoms in adults, abdominal pain in children, and overall pain. The statistical analysis also found that children had a predominance of leukopenia compared to adults, which is consistent with the observations of Mahle et al. Haematological findings indicated greater severity of leukopenic and thrombocytopenic conditions in the pediatric patients, as documented in the literature [15]. The bone marrowsuppressive Aspect of the immune system becomes more pronounced with younger ages [16]. Elevated liver enzymes were more prevalent in adults, which correlates with the findings of Ochiai et al. and is likely due to hepatic involvement resulting from a prolonged disease course and subsequent delayed treatment in adults [17]. In our cohort, however, children had a greater proportion of cases with hepatosplenomegaly, a finding also reported in the literature from Southeast Asia. In this region, pediatric patients with abdominal typhoid were reported to have more frequent cases of abdominal organomegaly due to immune hyperplasia and systemic inflammation [18]. Younger patients did have a greater proportion of complication rates, although this difference was not statistically significant. The documented data pattern requires more focused attention, as areas with the least pediatric critical care capabilities are likely to be the most impacted. Rapid and accurate diagnostics, assuming the continued spread of the extensively drug-resistant Salmonella Typhi strain in South Asia, will become even more critical [19]. Clinicians in endemic areas need to be more vigilant in suspecting typhoid fever in both adult and pediatric patients, and they must be able to differentiate age-specific symptoms to identify the condition accurately. Based on the present study's findings and prior work, implementing diagnostic algorithms with initial therapeutic interventions tailored to the respective age groups is necessary to reduce the time to diagnosis and improve recovery. To enhance and fine-tune procedural objectives concerning typhoid fever management in endemic areas, further research with multicenter designs and larger cohorts will be necessary [20-23].

CONCLUSION

Complications of typhoid fever in adults and children are unique and can be diagnosed using age-specific clinical and laboratory findings, as presented. This unique age profile enables practising physicians in areas of high endemicity to make timely and targeted treatment decisions, thereby improving patient care. A considerable number of complications associated with the disease can be avoided and controlled because of the age profile, which assists practitioners in making timely decisions.

Disclaimer: Nil

Conflict of Interest: None

Funding Disclosure: Nil

Authors' Contribution

Concept and Design of Study: Sadaf Alam

Data Collection: Izaz Zahid

Drafting of Manuscript: Marwan khan

Data Analysis: Marwan khan

Critical Review: Izaz Zahid

Final Approval of Version: All authors approved the final manuscript.

Accountability: All authors agree to be accountable for all aspects of the work. Each author contributed significantly to the study's conception, data collection, analysis, manuscript writing, and final approval in accordance with ICMJE criteria.

Research Ethics Statement

No animal studies were conducted for this research. Ethical approval was obtained from the Institutional Review Board (IRB/221PIMC/QTR/04/2022). The study was conducted in accordance with the ethical principles outlined in the Declaration of Helsinki (2013). Written informed consent was obtained from all participants or their legal guardians prior to inclusion in the study. No identifiable human data were included. All underlying data and findings described in this article and supplementary materials are available in online repositories.

REFERENCES

1. Amin MR, Das SK, Kabir A, Islam MR, Ahmed SM, Hasan MJ. Open Label Randomized Controlled

Comparison of Three Alternative Regimes of Ciprofloxacin, Azithromycin and Cefixime for Treatment of Uncomplicated Typhoid Fever in Bangladesh. Mymensingh medical journal: MMJ. 2021;30(3):725-37.

- 2. Ayo FE, Awotunde JB, Ogundokun RO, Folorunso SO, Adekunle AO. A decision support system for multi-target disease diagnosis: A bioinformatics approach. Heliyon. 2020;6(3):e03657. doi: https://doi.org/10.1016/j.heliyon.2020.e03657.
- 3. Beylefeld A, Abolnik C. Salmonella gallinarum strains from outbreaks of fowl typhoid fever in Southern Africa closely related to SG9R vaccines. Frontiers in veterinary science. 2023;10:1191497.doi: https://doi.org/10.3389/fvets.2023.1191497.
- 4. Burrows H, Antillón M, Gauld JS, Kim JH, Mogasale V, Ryckman T, et al. Comparison of model predictions of typhoid conjugate vaccine public health impact and cost-effectiveness. Vaccine. 2023;41(4):965-75.doi: https://doi.org/10.1016/j.vaccine.2022.12.032.
- 5. Cross DL, Verheul MK, Leipold MD, Obermoser G, Jin C, Jones E, et al. Vi-Vaccinations Induce Heterogeneous Plasma Cell Responses That Associate With Protection From Typhoid Fever. Frontiers in immunology. 2020;11:574057. doi: https://doi.org/10.3389/fimmu.2020.574057.
- 6. Debellut F, Friedrich A, Baral R, Pecenka C, Mugisha E, Neuzil KM. The cost of typhoid illness in lowand middle-income countries, a scoping review of the literature. PloS one. 2024;19(6):e0305692. doi: https://doi.org/10.1371/journal.pone.0305692.
- 7. Huang S, Yan M, Kan B. Prevalence and Influencing Factor Analysis of Typhoid/Paratyphoid Fever-China, 2011-2020. China CDC weekly. 2024;6(21):493-8. doi: https://doi.org/10.46234/ccdcw2024.095.
- 8. Kawali A, Srinivasan S, Mahendradas P, Shetty B. Epidemic retinitis and community outbreaks. Indian journal of ophthalmology. 2020;68(9):1916-9. doi: https://doi.org/10.4103/ijo.IJO_1327_20.
- 9. Kuehn R, Stoesser N, Eyre D, Darton TC, Basnyat B, Parry CM. Treatment of enteric fever (typhoid and paratyphoid fever) with cephalosporins. The Cochrane database of systematic reviews. 2022;11(11):Cd010452. doi: https://doi.org/10.1002/14651858.CD010452.pub2.
- 10. Lee EY, Park JY, Kim DR, Song M, Sahastrabuddhe S, Kim H, et al. Comparison of anti-Vi IgG responses between two clinical studies of typhoid Vi conjugate vaccines (Vi-DT vs Vi-TT). PLoS neglected tropical diseases. 2020;14(3):e0008171. doi: https://doi.org/10.1371/journal.pntd.0008171.
- 11. Ndako JA, Dojumo VT, Akinwumi JA, Fajobi VO, Owolabi AO, Olatinsu O. Changes in some haematological

parameters in typhoid fever patients attending Landmark University Medical Center, Omuaran-Nigeria. Heliyon. 2020;6(5):e04002.doi:

https://doi.org/10.1016/j.heliyon.2020.e04002.

- Pfavayi LT, Denning DW, Baker S, Sibanda EN, Mutapi F. Determining the burden of fungal infections in Zimbabwe. Scientific reports. 2021;11(1):13240. doi: https://doi.org/10.1038/s41598-021-92605-1.
- 13. Ryckman T, Karthikeyan AS, Kumar D, Cao Y, Kang G, Goldhaber-Fiebert JD, et al. Comparison of Strategies for Typhoid Conjugate Vaccine Introduction in India: A Cost-Effectiveness Modeling Study. The Journal of infectious diseases. 2021;224(Supple 5):S612-s24. doi: https://doi.org/10.1093/infdis/jiab150.
- Saini V, Duggal N. Comparison of rapid tests (antigen vs. antibody) for the diagnosis of typhoid in the first and second weeks of fever. Journal of family medicine and primarycare.2022;11(7):3730-4.doi: https://doi.org/10.4103/jfmpc.jfmpc 2329 21.
- Saleem K, Zafar S, Rashid A. Antimicrobial 15. sensitivity patterns of enteric fever in Pakistan: a comparison of years 2009 and 2019. The journal of the Royal College of PhysiciansofEdinburgh.2021;51(2):129-32.doi: https://doi.org/10.4997/jrcpe.2021.206.
- 16. Sam EK, Alagbo J, Asamoah A, Ansah F, Tandoh KZ, Amenga-Etego LN, et al. Diagnostic performance of Typhidot RDT in diagnosis of typhoid fever and antibiotic resistance characterisation in a cross-sectional study in Southern Ghana. BMC infectious diseases. 2024;24(1):1262. doi: https://doi.org/10.1186/s12879-024-10160-2.
- Shanks GD. Emergency typhoid immunisation after the fall of Singapore 1942. Internal medicine journal. 2022;52(11):2005-7. doi: https://doi.org/10.1111/imj.15947.
- 18. Sinha B, Rongsen-Chandola T, Goyal N, Arya A, Kumar CM, Chakravarty A, et al. Incidence of Enteric Fever in a Pediatric Cohort in North India: Comparison with Estimates from 20 Years Earlier. The Journal of infectious diseases.2021;224(Supple5):S558-s67.doi: https://doi.org/10.1093/infdis/jiab046.

- 19. Tabbasum S, Majeed MI, Nawaz H, Rashid N, Tahira M, Mohsin A, et al. Surface-enhanced Raman spectroscopy for comparison of serum samples of typhoid and tuberculosis patients of different stages. Photodiagnosis 2021;35:102426.doi: photodynamic therapy. https://doi.org/10.1016/j.pdpdt.2021.102426.
- Tadesse BT, Khanam F, Ahmmed F, Im J, Islam MT, Kim DR, et al. Prevention of Typhoid by Vi Conjugate Vaccine and Achievable Improvements in Household Water, Sanitation, and Hygiene: Evidence From a Cluster-Randomized Trial in Dhaka, Bangladesh. Clinical infectious diseases: an official publication of the Infectious Diseases Society.of.America.2022;75(10):1681-7.doi: https://doi.org/10.1093/cid/ciac289.
- 21. Tanmoy AM, Hooda Y, Sajib MSI, Rahman H, Sarkar A, Das D, et al. Trends in antimicrobial resistance amongst Salmonella Typhi in Bangladesh: A 24-year retrospective observational study (1999-2022). PLoS neglected tropical diseases. 2024;18(10):e0012558.doi: https://doi.org/10.1371/journal.pntd.0012558.
- 22. Thuluva S, Paradkar V, Matur R, Turaga K, Gv SR. A multicenter, single-blind, randomized, phase-2/3 study to evaluate immunogenicity and safety of a single intramuscular dose of biological E's Vi-capsular polysaccharide-CRM(197) conjugate typhoid vaccine (TyphiBEV(TM)) in healthy infants, children, and adults in comparison with a licensed comparator. Human vaccines & immunotherapeutics. 2022;18(5):2043103.doi: https://doi.org/10.1080/21645515.2022.2043103.
- 23. Uzair M, Wali S, Rehman AU, Ahmad A, Rafique MH, Nadeem MB. clinical efficacy of oral azithromycin versus other antimicrobial drugs in the treatment of typhoid
- patients across all age groups: a systematic review of randomized controlled trials. Journal of Ayub Medical College, Abbottabad :, JAMC. 2024;36(3):642-50. doi: https://doi.org/10.55519/jamc-03-12881.

All articles published in the Journal of Pak International Medical College (JPIMC) are licensed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International License (CC BY-NC 4.0). This license permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are properly cited. Commercial use of the content is not permitted without prior permission from the author(s) or thejournal.https://creativecommons.org/licenses/by-nc/4.0/deed.en